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Shortest Path

Input: A graph G with non-negative edge
weights, a source vertex s and a
target vertex t.

Output: The shortest path between s and t

in G .



Why not just Dijkstra?
O((|E | + |V |) log |V |) is pretty fast,
right?

For a graph of USA with 20M vertices
and 50M edges it will work for several
seconds on average
Millions of users of Google Maps want
the result in a blink of an eye, all at the
same time
Need something significantly faster
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Idea: Growing Circle
Lemma
When a vertex u is selected via ExtractMin,
dist[u] = d(s, u).

When a vertex is extracted from the
priority queue for processing, all the
vertices at smaller distances have
already been processed

A “circle” of processed vertices grows
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s t
v

r r

C1

C2 C3

area(C1) = 4𝜋r 2

2 · area(C2) = 2𝜋r 2
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Roughly 2x speedup

Good, but not great
This is true for road networks
Let’s look at social networks
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Six Handshakes

In 1929, Hungarian mathematician
Frigyes Karinthy made a “Small World”
conjecture

Can pass a message from any person to
any person in at most 6 handshakes
This is close to truth according to
experiments and is called a “six
handshakes” or “six degrees of
separation” idea
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Facebook

Suppose an average person has around
100 Facebook friends

Then 10000 friends of friends
1000000 friends of friends of friends
...
1 trillion people at six handshakes
Not possible, as there are only about 7
billion people on earth



Facebook

Suppose an average person has around
100 Facebook friends
Then 10000 friends of friends

1000000 friends of friends of friends
...
1 trillion people at six handshakes
Not possible, as there are only about 7
billion people on earth



Facebook

Suppose an average person has around
100 Facebook friends
Then 10000 friends of friends
1000000 friends of friends of friends

...
1 trillion people at six handshakes
Not possible, as there are only about 7
billion people on earth



Facebook

Suppose an average person has around
100 Facebook friends
Then 10000 friends of friends
1000000 friends of friends of friends
...

1 trillion people at six handshakes
Not possible, as there are only about 7
billion people on earth



Facebook

Suppose an average person has around
100 Facebook friends
Then 10000 friends of friends
1000000 friends of friends of friends
...
1 trillion people at six handshakes

Not possible, as there are only about 7
billion people on earth



Facebook

Suppose an average person has around
100 Facebook friends
Then 10000 friends of friends
1000000 friends of friends of friends
...
1 trillion people at six handshakes
Not possible, as there are only about 7
billion people on earth



Facebook
Find the shortest path from Michael to
Bob via friends connections

For the two “farthest” people, Dijkstra
has to look through 2 billion people
If we only consider friends of friends of
friends for both Michael and Bob, we
will find a connection
Roughly 1M friends of friends of friends
1M + 1M = 2M people — 1000 times
less
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Meet-in-the-middle

More general idea, not just for graphs

Instead of searching for all possible
objects, search for first halves and for
second halves separately
Then find “compatible” halves
Typically roughly O(

√
N) instead of

O(N), including the previous Facebook
example
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Conclusion

Dijkstra goes in “circles”
Bidirectional search idea can reduce the
search space
Roughly 2x speedup for road networks
Meet-in-the-middle —

√
N instead of N

1000 times faster for social networks
Next video — Bidirectional Dijkstra
algorithm
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Dijkstra Reminder

To find the shortest path from s to t

Initialize dist[s] to 0, all other
distances to ∞
ExtractMin — choose unprocessed u

with the smallest dist[u]
Process u — Relax the edges outgoing
from u

Repeat until t is processed
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Reversed Graph
Definition
Reversed graph GR for a graph G is the
graph with the same set of vertices V and
the set of reversed edges ER , such that for
any edge (u, v) ∈ E there is an edge
(v , u) ∈ ER and vice versa.

a

b

c
G

a

b

c
GR



Bidirectional Dijkstra
Build GR

Start Dijkstra from s in G and from t in
GR

Alternate between Dijkstra steps in G

and in GR

Stop when some vertex v is processed
both in G and in GR

Compute the shortest path between s

and t
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Computing Distance

Let v be the first vertex which is processed
both in G and in GR . Does it follow that
there is a shortest path from s to t going
through v?
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Computing Distance

Let v be the first vertex which is processed
both in G and in GR . Does it follow that
there is a shortest path from s to t going
through v?

0
s t

551 2
3 3

4

876
1 1

4

1 1



Computing Distance
Lemma
Let dist[u] be the distance estimate in the
forward Dijkstra from s in G and distR [u]
— the same in the backward Dijkstra from t

in GR . After some node v is processed both
in G and GR , some shortest path from s to t

passes through some node u which is
processed either in G , in GR , or both, and
d(s, t) = dist[u] + distR [u].
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Proof

s t
v

u

dist
[u]

w distR
[w ]

d(s, t) = dist[u] + l(u,w) + distR [w ] =

= dist[u] + distR [u]



BidirectionalDijkstra(G , s, t)
GR ← ReverseGraph(G )
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
Fill prev, prevR with None for each node
proc← empty, procR ← empty
do:

v ← ExtractMin(dist)
Process(v ,G , dist, prev, proc)
if v in procR:

return ShortestPath(s, dist, prev, proc, t, . . . )
vR ← ExtractMin(distR)
repeat symmetrically for vR as for v

while True



Relax(u, v , dist, prev)

if dist[v ] > dist[u] + w(u, v):
dist[v ]← dist[u] + w(u, v)

prev[v ]← u



Process(u,G , dist, prev, proc)

for (u, v) ∈ E (G ):
Relax(u, v , dist, prev)

proc.Append(u)



ShortestPath(s, dist, prev, proc, t, distR , prevR , procR)

distance ← +∞, ubest ← None
for u in proc+ procR:

if dist[u] + distR [u] < distance:
ubest ← u
distance ← dist[u] + distR [u]

path← empty
last ← ubest
while last ̸= s:

path.Append(last)
last ← prev[last]

path← Reverse(path)
last ← ubest
while last ̸= t:

last ← prevR [last]
path.Append(last)

return (distance, path)



Conclusion

Worst-case running time of Bidirectional
Dijkstra is the same as for Dijkstra
Speedup in practice depends on the
graph
Memory consumption is 2x to store G
and GR

You’ll see the speedup on social network
graph in the Programming Assignment


	Bidirectional Search
	Bidirectional Dijkstra

